High-quality geometry module data for pipeline strain analyses

ROSEN Technology & Research Center Germany Hendrik Aue November 2007

Bending Strain

Distance

- 1. Introduction
- 2. Measurement Methods
- 3. Test Environment
- 4. Performance
- 5. Inspection Extensions
- 6. Conclusions

Contents

1. Introduction

- 2. Measurement Methods
- 3. Test Environment
- 4. Performance
- **5. Inspection Extensions**
- 6. Conclusions

Bending the Pipeline can lead to Strain

Copyright © ROSEN Group 2007 Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007

Curvature equivalent Radius in [m]:
$$R[m] = \frac{1}{\kappa}$$

Not-bended Pipeline (straight):

Radius is infinite

Bended Pipeline:

Radius of 1000 m (e.g.)

Bending Strain | Hendrik Aue | Nov 2007

Strain is equivalent to the Curvature: $\varepsilon = \frac{D}{2}\kappa$

The Bending Strain Radius is: R[D] = R[m]/D

Bends are a Change in the Curvature κ of a Pipeline

Bending Strain is Curvature related to the Pipe Diameter

e.g. constant Curvature, with differing strain results for different Pipeline Diameters

e.g. the greater the Pipeline Diameter, the more force is needed to bend it

Contents

1. Introduction

2. Measurement Methods

- 3. Test Environment
- 4. Performance
- 5. Inspection Extensions
- 6. Conclusions

Direct Strain Measurement

Strain Gauges:

- Sensor in direct contact with the pipeline
- Local Strain Measurement

Strain Gauges:

GPS / Geodetic Measurements:

- GPS Points on top of the pipeline
- Local Curvature Measurement

GPS / Geodetic Measurements:

In-line Inspection with an XYZ System:

- Gyroscopes and Accelerometers for Navigation
- XYZ Co-ordinates of the Pipeline Trajectory

Pipeline Inspection

In-line Inspection with an XYZ System:

- XYZ System on board of a caliper tool
- High frequent XYZ Co-ordinates of the Pipeline Trajectory
- Known Curvature of the Pipeline

Contents

1. Introduction

2. Measurement Methods

3. Test Environment

- 4. Performance
- **5. Inspection Extensions**
- 6. Conclusions

Bending of the Pipe at 4 Points:

- Pipeline fix at 2 Points
- Induced Bending Strain at 2 Points

4-Point Bending

Bending of the Pipe at 4 Points:

- Pipeline fix at 2 Points
- Induced Bending Strain at 2 Points

Bending of the Pipe at 4 Points:

- Successively induced Bending Strain
- Different Series of Bending Strain

"Shop" Bends

Combination of Shop Bends:

- Subsequent 5D-25D-5D Bends
- Simulation of "plastic deformation"

Contents

- 1. Introduction
- 2. Measurement Methods
- 3. Test Environment

4. Performance

- **5. Inspection Extensions**
- 6. Conclusions

Performance in order to answer:

- Detection Capabilities
- Repeatability
- Distinction, Accuracy

• Subsequent Bend Appearance: "3 Circles"

Typical Bending Strain Radii:

• Strain Radius at the maximum of Displacement

Copyright © ROSEN Group 2007 Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007

Typical Bending Strain Radii:

• Strain Radius at the End of Displacement

Copyright © ROSEN Group 2007 Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007

Bending Strain [%]:

• Strain Values in 4-Point Bending Area

Subsequently induced Bending Strain:

- Bending Strain Series inspected several times
- High Repeatability of Bending Strain levels

Accuracy of Bending Strain:

- Comparison of several Bending Strain Results
- Accuracy reaches 0.002% or +/-5 mm displacement over 20 m of 16" Pipeline

Accuracy in Bending Strain equivalent to Displacement

Copyright © ROSEN Group 2007 Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007

Bending Strain and Displacement over 30 m Distance:

• The larger the bend radius the smaller the displacement

Bending Strain and Displacement over 30 m Distance:

• Smaller Bending Strain Radius with more displacement

Contents

- 1. Introduction
- 2. Measurement Methods
- 3. Test Environment
- 4. Performance

5. Inspection Extensions

6. Conclusions

Radius Measurement

=

 δ Touchless Proximity Sensor
+
β Electronic Angle Sensor

Single Geometry Inspection

ROSEN Extended Geometry Tool (RoGeo·Xt)

Two plane system: **100% coverage**

Copyright © ROSEN Group 2007 Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007

Mechatronic Sensor

MFL-tool with XYZ mapping

Contents

- 1. Introduction
- 2. Measurement Methods
- 3. Test Environment
- 4. Performance
- 5. Inspection Extensions
- 6. Conclusions

Conclusions

- Strain Detection confident from 0.01% and higher
- Repeatability of all induced Strain levels with 90%
- Accuracy of 0.002% / 5 mm displacement over 20 m of 16" Pipeline
- Combined Inspection Tools for Strain and MFL Inspection

Conclusions

Copyright © ROSEN Group 2007 Copy prepared for PPSA Meeting November 2007

Bending Strain | Hendrik Aue | Nov 2007

Thank you for joining this presentation.

